An Overview of Some High Order and Multi-Level Finite Difference Schemes in Computational Aeroacoustics

نویسندگان

  • Appanah Rao Appadu
  • Muhammad Zaid Dauhoo
چکیده

In this paper, we have combined some spatial derivatives with the optimised time derivative proposed by Tam and Webb in order to approximate the linear advection equation which is given by . 0 = ∂ ∂ + ∂ ∂ x f t u These spatial derivatives are as follows: a standard 7-point 6 th -order central difference scheme (ST7), a standard 9-point 8 th -order central difference scheme (ST9) and optimised schemes designed by Tam and Webb, Lockard et al., Zingg et al., Zhuang and Chen, Bogey and Bailly. Thus, these seven different spatial derivatives have been coupled with the optimised time derivative to obtain seven different finite-difference schemes to approximate the linear advection equation. We have analysed the variation of the modified wavenumber and group velocity, both with respect to the exact wavenumber for each spatial derivative. The problems considered are the 1-D propagation of a Boxcar function, propagation of an initial disturbance consisting of a sine and Gaussian function and the propagation of a Gaussian profile. It is known that the choice of the cfl number affects the quality of results in terms of dissipation and dispersion characteristics. Based on the numerical experiments solved and numerical methods used to approximate the linear advection equation, it is observed in this work, that the quality of results is dependent on the choice of the cfl number, even for optimised numerical methods. The errors from the numerical results have been quantified into dispersion and dissipation using a technique devised by Takacs. Also, the quantity, Exponential Error for Low Dispersion and Low Dissipation, eeldld has been computed from the numerical results. Moreover, based on this work, it has been found that when the quantity, eeldld can be used as a measure of the total error. In particular, the total error is a minimum when the eeldld is a minimum. Keywords—Optimised time derivative, dissipation, dispersion, cfl number. Nomenclature: k : time step; h : spatial step; : β advection velocity; r: cfl/Courant number; h k r β = ; w = h θ : exact wave number; n : time level; RPE : Relative phase error per unit time step; AFM : modulus of amplification factor. A. R. Appadu is a PhD student at the University of Mauritius, Mauritius (email: [email protected]). M. Z. Dauhoo (Corresponding author) is a Senior Lecturer at the University of Mauritius, Mauritius (e-mail: [email protected]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An overview of high-order finite difference schemes for computational aeroacoustics

One of the problems in computational aeroacoustics (CAA) is the large disparity between the length and time scales of the flow field, which may be the source of aerodynamically generated noise, and the ones of the resulting acoustic field. This is the main reason why numerical schemes, used to calculate the timeand space-derivatives, should exhibit a low dispersion and dissipation error. This p...

متن کامل

High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations

In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...

متن کامل

Optimized finite-difference (DRP) schemes perform poorly for decaying or growing oscillations

Computational aeroacoustics often use finite difference schemes optimized to require relatively few points per wavelength; such optimized schemes are often called Dispersion Relation Preserving (DRP). Similar techniques are also used outside aeroacoustics. Here the question is posed: what is the equivalent of points per wavelength for growing or decaying waves, and how well are such waves resol...

متن کامل

Water hammer simulation by explicit central finite difference methods in staggered grids

Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...

متن کامل

Parallel Computation of Two-dimensional Linearized Euler Equations

Perform numerical analysis of sound generation and propagation with accuracy and with lower computational time are some of the main challenges for Computational Aeroacoustics (CAA), which had experienced some major improvements in the last decade. In the present work it was performed numerical study of two-dimensional propagation of waves by solving LEE equations applied to a Gaussian pulse in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009